Orissa Journal of Physics ISSN 0974-8202 © Orissa Physical Society

Vol. 24, No.2 August 2017 pp. 183-190

Electromagnetic transitions in the $(b\bar{c})$ binding system

¹S PATNAIK, ¹P C DASH and ²S KAR

¹Department of Physics, Siksha 'O' Anusandhan (Deemed to be University) Bhubanesawr-751030, India

²Department of Physics, North Orissa University, Baripada 757003, India

Received: 19.6.2017; Revised: 4.7.2017; Accepted: 28.7.2017

Abstract. We study the electromagnetic decay: $B_c^* \to B_c e^+ e^-$ with B_c -meson in its ground state B_c -meson in the relativistic independent quark model based on a flavor independent potential in the scalar-vector harmonic form. The transition form factor $F_{B_c^*B_c}(q^2)$ obtained in this model is found to increase linearly with q^2 in the allowed kinematic range of $(2m_e)^2 \leq q^2 \leq (m_{B_c^*} - m_{B_c})^2$. Our predictions for decay width $\Gamma(B_c^* \to B_c e^+ e^-) = 0.7112 \times 10^{-5} \text{ KeV}$ is compatible with the result of other model calculation based on Bethe-Salpeter approach. The model predictions in this sector would not only yield necessary information about members of B_c family but would provide clue for experimental determination of the unmeasured mass of B_c^* meson which is expected at LHC b and the Z^0 factory in near future.

Keywords: Transition form factor, mass-splitting, decay width, Relativistic independent quark model.

[Full Paper]